Photomechanical materials made of photochromic crystals, which change their molecular structure reversibly in response to light, have the potential to impact fields from semiconductors to pharmaceuticals. For the first time in the world, an Osaka Metropolitan University team has developed a crystal patterning method demonstrating that it is possible to control the orientation of photochromic crystals known as diarylethenes. Photomechanical materials made of photochromic crystals, which change their molecular structure reversibly in response to light, have the potential to impact fields from semiconductors to pharmaceuticals. For the first time in the world, an Osaka Metropolitan University team has developed a crystal patterning method demonstrating that it is possible to control the orientation of photochromic crystals known as diarylethenes. Analytical Chemistry Materials Science Phys.org – latest science and technology news stories