When chiral gold nanoparticles are irradiated with near-infrared femtosecond pulses, visible emission of luminescence is observed. In a study published in Advanced Optical Materials, this luminescence was found to yield high selectivity for left- or right-handed circularly polarized light, depending on the chirality of the nanoparticles, with a dissymmetry factor of approximately 0.7. This finding suggests the potential to elevate various applications using circularly polarized light to practical levels. When chiral gold nanoparticles are irradiated with near-infrared femtosecond pulses, visible emission of luminescence is observed. In a study published in Advanced Optical Materials, this luminescence was found to yield high selectivity for left- or right-handed circularly polarized light, depending on the chirality of the nanoparticles, with a dissymmetry factor of approximately 0.7. This finding suggests the potential to elevate various applications using circularly polarized light to practical levels. Nanophysics Nanomaterials Phys.org – latest science and technology news stories