Porous organic crystals with superior properties as CO2 adsorbents were created by researchers at Institute of Science Tokyo. Owing to the novel 2.5-dimensional skeleton, the materials feature ultrahigh-density amines. The covalently-bonded microporous skeleton and high crystallinity realize fast CO2 adsorption and high thermal stability. Their low adsorption heat, only one-fourth of the current amine scrubbing method, and their light-elemental nature can reduce the cost for CO2 separation from flue gases. Porous organic crystals with superior properties as CO2 adsorbents were created by researchers at Institute of Science Tokyo. Owing to the novel 2.5-dimensional skeleton, the materials feature ultrahigh-density amines. The covalently-bonded microporous skeleton and high crystallinity realize fast CO2 adsorption and high thermal stability. Their low adsorption heat, only one-fourth of the current amine scrubbing method, and their light-elemental nature can reduce the cost for CO2 separation from flue gases. Polymers Analytical Chemistry Phys.org – latest science and technology news stories
Innovative porous organic crystal structure offers superior CO₂ separation
