Olympicene molecular chains create quantum spin systems with spintronics applications

Olympicene molecular chains create quantum spin systems with spintronics applications

In a new publication in Nature Materials, an international team of researchers has developed groundbreaking artificial chains of the iconic “olympicene” molecules to realize the antiferromagnetic (AF) spin-½ Heisenberg model, a flagship quantum spin model that has been the cornerstone of quantum magnetism, since the seminal work of Bethe, for almost a century now. This study makes nanographenes (NGs) an ideal platform for realizing and studying highly entangled quantum spin systems, with potential applications in insulator-based AF spintronics. In a new publication in Nature Materials, an international team of researchers has developed groundbreaking artificial chains of the iconic “olympicene” molecules to realize the antiferromagnetic (AF) spin-½ Heisenberg model, a flagship quantum spin model that has been the cornerstone of quantum magnetism, since the seminal work of Bethe, for almost a century now. This study makes nanographenes (NGs) an ideal platform for realizing and studying highly entangled quantum spin systems, with potential applications in insulator-based AF spintronics. Condensed Matter Quantum Physics Phys.org – latest science and technology news stories

Leave a Reply

Your email address will not be published. Required fields are marked *