Studies that explore how the denser sections of atoms, known as atomic nuclei, interact with neutrons (i.e., particles with no electric charge) can have valuable implications both for the understanding of these atoms’ underlying physics and for the development of nuclear energy solutions. A process that is central to these interactions is neutron capture, which entails the absorption of a neutron by a nucleus, followed by the emission of gamma-rays. Studies that explore how the denser sections of atoms, known as atomic nuclei, interact with neutrons (i.e., particles with no electric charge) can have valuable implications both for the understanding of these atoms’ underlying physics and for the development of nuclear energy solutions. A process that is central to these interactions is neutron capture, which entails the absorption of a neutron by a nucleus, followed by the emission of gamma-rays. General Physics Phys.org – latest science and technology news stories
Study uncovers origin of the large neutron-capture cross section in ⁸⁸Zr using new methodology
