Lignocellulosic biomass, such as paper mulberry, holds promise for sustainable material production due to its cost-effectiveness and renewability. However, optimizing lignin composition remains challenging due to its complex structure and varied composition, impacting the efficiency and quality of resulting porous carbon materials. Lignocellulosic biomass, such as paper mulberry, holds promise for sustainable material production due to its cost-effectiveness and renewability. However, optimizing lignin composition remains challenging due to its complex structure and varied composition, impacting the efficiency and quality of resulting porous carbon materials. Plants & Animals Molecular & Computational biology Phys.org – latest science and technology news stories
Unlocking carbon’s potential: CRISPR boosts lignocellulose absorption
