High-temperature superconducting magnets made from REBCO, an acronym for rare-earth barium copper oxide, make it possible to create an intense magnetic field that can confine the extremely hot plasma needed for fusion reactions, which combine two hydrogen atoms to form an atom of helium, releasing a neutron in the process. High-temperature superconducting magnets made from REBCO, an acronym for rare-earth barium copper oxide, make it possible to create an intense magnetic field that can confine the extremely hot plasma needed for fusion reactions, which combine two hydrogen atoms to form an atom of helium, releasing a neutron in the process. Superconductivity Plasma Physics Phys.org – latest science and technology news stories
Will neutrons compromise the operation of superconducting magnets in a fusion plant?
